
 40 2017، 1، العدد 17مجلد -مجلة البصرة للعلوم الهندسية

Fast Combined Decimal/Binary Multiplier Based on

Redundant BCD 4221-8421Digit Recoding

Mohammed Nabil

Dr. Fatemah K Al-Assfor

Dr. Mohammed A. Al-Ebadi
Electrical Engineering Department Computer Engineering Department Computer Engineering Department

University of Basrah University of Basrah University of Basrah

Basra, Iraq Basra, Iraq Basra, Iraq

almatajen@gmail.com Fatimah_alasfoor@yahoo.com m.a.al-ebadi@ieee.org

Abstract- Many applications consider floating point arithmetic

as a key component of the computations. Combined

decimal/binary arithmetic becomes an important topic

supports high speed decimal/binary applications. A new 64-bit

(16×16 digit) combined decimal/binary multiplier is proposed

and implemented in this work that can be used for both fused

multiply add (FMA) and multiplier unit. A new partial

products reduction tree is shared between decimal and binary

multiplier unit. The valuation and comparison result between

the proposed multiplier and the previous most recent works

shows 4.66 % less delay than combined decimal/binary

multiplier and 19.33 % less delay than fastest standalone

decimal multiplier.

Index Terms- Multiplier, BCD 4-2-2-1, BCD 8-4-2-1, decimal,

binary.

I. Introduction

Computer hardware is mainly depending on binary

arithmetic due to its hardware implementation is simpler

than decimal arithmetic. However, the decimal arithmetic

became a necessity in most commercial and financial

applications. Thence results must be accurate and match

those performed by human calculations. Because of the

importance of the decimal, IEEE submits decimal floating-

point specification in IEEE 754-2008 standard [1]. The main

concern of the decimal numbers is that they cannot be

represented as a binary number with a finite number of bits,

the further 4-bit combinations, i.e. 1010 to 1111, are not

valid in decimal system [2]. The simplest multiplication

process is to directly determine the product of two operands

P = N1 × N2, where N1 represents the multiplicand, N2 the

multiplier, (PP) the partial products and (P) represents the

product. The two vectors (sum and carry) are located in the

last two rows of the multiplication operation sequence

before the product. All the bits of the PPs in each column

are reduced to obtain two vectors: sum and carry [3].

Decimal and binary multiplication can be implemented in

parallel approaches. A parallel Multiplier approach is

divided into five main stages which are multiplier operand

recoding, multiplicand multiples generation, generation of

partial product (PP), reduction of PP and carry propagation

addition methods to calculate the redundant final result [4].

Decimal multiplier usually has larger area and longer

delay than its binary counterpart; thus, architecture which

supports both decimal and binary arithmetic unit should be

shared some hardware components. A variety of redundant

BCD codes like 4221, 5211, and 3321 might be used in

decimal arithmetic as the sum of 4-bit equal to 9 that satisfy

the decimal number representation (0,1,2,…… 9). The BCD

4-2-2-1 and BCD 5-2-1-1 codes are very ordinary because

they supported 4 bits carry save addition (CSA) and module

X2 operation [5].

In this paper, a combined multiplier is proposed to speed

up performance of the floating point unit. Several

techniques have been proposed to enhance the multiplier

performance. These techniques are: 1) a new PPR tree is

proposed that uses column by column accumulation to add

the PPs into two vectors (sum and carry); 2) (9:4) and (8:4)

compressors based on bit counters uses to simplify the

reduction stage; 3) a pre-alignment approach with multiplier

array is suggested; 4) as long as digits are represented in

BCD format, there is no need for additional correction

hardware circuit other than module X2 in decimal and 1-bit

left shift (L1) operation in binary [6-7].

The rest of the paper consists of six sections; section II

reviews related works. Proposed deign is described in

section III. The simulation results are depicted in section IV.

Section V determines the delay and compares the result with

the recent related works. Finally, section VI shows the

conclusions.

II. RELATED WORKS

Recently, several hardware implementations of digital

multiplier have been adopted for combined decimal and

binary and others for standalone parallel decimal multiplier.

Hickmann et al. [8] have presented a combined decimal and

binary multiplier design with low-latency and an efficient

area by replacing the (4:2) CSA with (3:2) CSA in the

partial products tree to decrease the number of the decimal

doubling units and propose a split decimal/binary multiplier

tree. Vestias et al. [9] had proposed (8×8) and (16×16)

decimal multiplier using binary multiplication method.

L.Han et al. [10] have presented a new technique of parallel

decimal multiplication using redundant digit set [-8,8]

approach. Also, (P+1) sign digit (SD) partial products have

been generated which can be reduced using new multi

operand SD addition. Zhu et al. [11] have presented decimal

multiplier using the advantage of the BCD 8-4-2-1 and BCD

5-4-2-1 recoding to improve the pre-computations of (2A)

and (5A). Also the work is introduced a new BCD 4-2-2-

1multiplier based on a navel BCD 4-2-2-1 full adder. Cui et

al.[12] have proposed a new partial product tree. The carries

which are generated between the digit columns had been

counted using a BCD 4-2-2-1 sum correction circuit. Also

decimal (3:2) compressors are used in the PPR tree to

reduce the result of 6*x carries count and binary CSA PPR

tree. Wahaba et al.[13] have presented a combined decimal

and binary multiplier based on multi-operand adder using

decimal to binary conversion approach. From the related

works, it is clear that the BCD 4-2-2-1 format has three

interesting properties. First, all the 16 possible BCD 4-2-2-1

values had valid representation in decimal format. Second,

BCD 4-2-2-1 supports a decimal doubling unit which is

Basrah Journal for Engineering Sciences, vol. 17, no. 1, 2017 41

●

required only two levels of logic function. Third, BCD 4-2-

2-1 is a self-complement which supports the (9’s)

complement.

Table I illustrates the BCD 8-4-2-1, BCD 4-2-2-1, and

BCD 5-2-1-1 recoding which are used in this work.

1. PROPOSED COMBINED DECIMAL/BINARY

MULTIPLIER

2. The aim of this work is to design and implement an

efficient multiplier to be utilized in both decimal and binary

units based on the parallel multiplication approach with

sharing some hardware resources. Most of the multipliers

are partitioned into the same main blocks, but the difference

of them is in the implementation way of each block and how

they are combined together to achieve a high performance

and reduced the path delay. The decimal multipliers

described in [7] are reconfigured and improved in this work.

These improvements let the CSA reduction tree compatible

between decimal and binary path. The partial products tree

is shared between the decimal and binary because of the 1-

bit left shift (L1), which is explained in Fig.1, is used in

binary partial product reduction stage for correction

purpose.

A binary operand is recoded to binary SD Radix-4 while

a decimal operand is recoded to decimal SD Radix-5 that

has lower latency in multiplicand multiples generation stage.

This is because of SD Radix-4 requires additional partial

products that increases the area during the partial product

selection stage, and both upper and lower partial product

digits and resultant in BCD 4221 format.

The top level of the proposed combined multiplier is

illustrated in Fig.2. The selection and reduction of the partial

product stages are shared between the decimal and binary

operation while the generation of multiplicand multiple and

the recoding of multipliers are separated for each data type.

The idea behind decimal multiplies recoded into Radix-5 to

generate 32-digit that is the same number of partial products

of the binary multiplication. A set of 2-to-1 MUXs are

inserted after the multiplicand multiples generation and

multiplier recoding stages to determine the current operation

type either decimal or binary multiplication. According to

decimal SD Radix-5 and binary SD Radix-4,

partial products for the decimal and binary multiplication

will be generated. Furthermore, an additional PP of 1X

(which means no shift) is required in the last row of the

reduction tree to correct the result when the last recoded

sign digit (SD) is negative during the multiplication of 64-

bit unsigned binary number. The total numbers of partial

products are equal {() +1}.

Table I

BCD 8-4-2-1, BCD 4-2-2-1 and BCD 5-2-1-1 Recoding

Decimal BCD 8-4-2-1 BCD 4-2-2-1 BCD 5-2-1-1

0 0000 0000 0000

1 0001 0001 0010 or 0001

2 0010 0010 or 0100 0100 or 0011

3 0011 0011 or 0101 0101 or 0110

4 0100 1000 or 0110 0111

5 0101 1001 or 0111 1000

6 0110 1010 or 1100 1010 or 1001

7 0111 1011 or 1101 1100 or 1011

8 1000 1110 1110 or 1101

9 1001 1111 1111

A. Multiplier Operand Recoding techniques

The advantage of using decimal SD Radix-5 and binary

SD Radix-4 together in the proposed multiplier is that each

multiplier digit is divided to two parts (upper and lower) to

generate the two PPs.

In SD Radix-4 recoding, each 4-bit of multiplier ∈ (0,

1, 2, 3,…, 15), the carry-in () bit from the lower 4-bit,

and the carry out () bit to the next four bits are utilized

to generate two digits: lower and upper, as illustrated in Eq.

(1).

Fig. 2 Top Level of the Combined Multiplier

●

●

●

BU
47 47

A 64 B 64

Decimal

Radix-5

Recoding

Binary

Radix-4

Recoding

Mux Bank
Bank

Mux Bank

BL

16x PP 17x PP

128 128

Mux Bank (U) Mux Bank (L)

Proposal 33:2 Partial Product Reduction Tree

Binary Multiple

Generation

Decimal Multiple

Generation

{1A,2A,5A,10A} {1A,2A,4A,10A}

BorD

Carry Sum

 42 2017، 1، العدد 17مجلد -مجلة البصرة للعلوم الهندسية

 + = 16 × + 4 × + (1)

where ∈ {-2, -1, 0, 1, 2} represents the upper digit and

 ∈ {-2, -1, 0, 1, 2} represents the lower digit.

A carry out (bit is generated from the input digit

and it doesn’t count on the value of carry in bit.

Furthermore, it does not add any carry propagation delay

overhead.

The selection signals of SD Radix-4 can be generated

from the binary input operand (B) per digit by Eq.(2) and

(3):

;

 (2)

 ;

 (3)

 =

For decimal SD Radix-5 recoding, each BCD 4-2-2-1

digit of the Multiple B ∈ (0, 1, 2, 3… 9) is recoded into two

digits that represents an upper and lower digit

in addition to the sign bit. This recoding has different sets

of multiplicand multiplies (5A, 10A instead of 4A, 8A)

which are generated by various logical expressions. The

multiplicand multiplies {0, A, 2A} can be selected by lower

digit while the upper digit is used to select {0, 5A, 10A}

according to Eq. (4)

 = × 5 + (4)

Where {2, 1, 0} and {2, 1 , 0, -1, -2}. The

selection signals of SD Radix-5 can be generated from

multiplier digit (B) using Eq. (5):-

 ;

Where and are the operand represented in BCD

4-2-2-1 and BCD 8-4-2-1, respectively.

The selection of partial products stage outputs 32 partial

products, some of them are negative and need their sign to

be extended. The detail structure of the multiplier digit

recoder and multiplicand multiples selection are illustrated

in Fig. 3.

Generation of Multiplicand Multiples

In this stage, a set of multiplicand multiples had been

generated in parallel according to each multiplier digit.

Binary radix-4 ∈ (, , and multiplies are

coded to BCD 8-4-2-1 and its counterpart decimal radix-5 ∈

(, , and multiplies are coded to BCD 4-

2-2-1.

The multiples of binary multiplicand are obtained

directly by m-bit left shifts (L) where m ∈ (1, 2, 3,

4). Negative multiple is performed by bitwise inversion

(one’s complement).

The decimal multiplicand multiplies A, 2A, 5A and 10A

are generated in simple levels of logical expression using an

recoding methods and left shift. It can be generated as

follows:

Multiple A: the BCD 8-4-2-1 multiplicand is recoded to

BCD 4-2-2-1 easily as follow:

 (,) = (⋎)

(6)

Multiple 2A: each BCD 8-4-2-1 is recoded into BCD 5-

2-1-1 using Eq. (7):

 = ⋎ . (⋎);

 = ⋎ ((.)⊕);

 = . ⋎ . () ;

 = ⋎ (⊕) ;

Basrah Journal for Engineering Sciences, vol. 17, no. 1, 2017 43

Then, 1-bit left shift (L1) operation is done on the

recoded multiplicand result to obtain 2A multiple results in

BCD 4-2-2-1.

Multiple 5A: First, each BCD 8-4-2-1 is shifted 3-bit to

the left by considering the result in BCD 5-4-2-1.Then; this

result is recoded from BCD 5-4-2-1 into BCD 4-2-2-1

according to Eq. (8):

 = ⋎ ;

 = . (⋎ (.)) ;

 = . . (⋎);

 = ⊕ ;

Multiple 10A: each BCD 8-4-2-1 is recoded into BCD

4-2-2-1 using Eq. (6) then the result is shifted 4-bit to left.

The negative multiples generation are formed according

to 10’s complement of the positive multiples, as below:

) . + 1 (9)

 Two MUXs are used to select two appropriate

multiplicand multiples according to each multiplier digit.

B. Reduction of Partial Product

Both BCD 4-2-2-1 and BCD 8-4-2-1 formats are used in

the partial products reduction stage. This stage consists of:

(9:4) and (8:4) compressors, (3:2) CSA tree to reduce each

column into a two vectors (sum and carry), module

X2, and 1-bit left shift (L1) operations.

1) Decimal/Binary Carry Free Adders (CFA)

The proposed multiplier uses two types of compressors:

(9:4) and (8:4) to add the input partial products based on bit

counter methods for decimal and binary operands coded in

BCD 4-2-2-1 and BCD 8-4-2-1. These compressors

composed of a row of bit counters which reduce a column of

9 or 8 bits into a 4-bit vector coded in BCD 4-2-2-1 or BCD

8-4-2-1 for decimal or binary, respectively. Fig. 4 shows the

implementation of the (9:4) compressor which can reduce

up to 9 bits using two levels of full adder. The output of the

binary weight is indicated by a bracket. The path delay of

(9:4) and (8:4) compressors are equal to the path delay of

binary (4:2) CSA. To illustrate the algorithm, Fig.5 shows

an example of reduction an 8-decimal digit coded in BCD 4-

2-2-1 and the result is coded in BCD 4-2-2-1 too.

The 4-bit of each digit is take place in a column. From

top represents the most significant bit to the bottom

represents least significant bit and aligned in a 4-row.

2) Decimal/Binary (3:2) Carry Save Adder

The conventional 4-bit (3:2) CSA is used in the second stage

of the proposed reduction tree to add the output result from

the first level of (9:4) and (8:4) compressors.

Decimal (3:2) CSA consists of a binary (3:2) CSA and

module X2. The module X2 operation, shown in Fig.6,

consists of digit conversion from BCD 4-2-2-1 to BCD 5-2-

1-1, then the output is shifted to the left by 1-bit. A 4-bit

MUX was controlled by BorD control signal to determine

whether the CSA is decimal or binary.

Figure.7 explains the decimal/binary CSA(s) reduction

tree. The X4 block can be obtained by two cascaded of

modules X2.

3) Combined Decimal/Binary CSA Reduction Tree

A new partial products tree is used to reduce :2) rows

where (2 33) of [k] input digits with weight or

input 4-bit [k] with weight into two vectors and

(4 bits for each one).The input digits is coded either in

BCD 4-2-2-1 for decimal case or in BCD 8-4-2-1 for binary

case. The idea of the CSA tree is to use the tree for both

decimal and binary computations.

In case of decimal, the input operands are recoded in

BCD 4-2-2-1. Whereas; in case of binary, the input

operands are represented by BCD 8-4-2-1 digits each of 4-

bit.

As presented in Fig.7, the proposed partial product tree

consists of three parts:

1. For , the input digits [k] reduced in

the first level using the (9:4) and (8:4) compressors. The

output digits are multiplied by 2 or 4 (i.e. X2 or X4) and

it is corrected by L1 block, where L1 (1-bit left shift).

Then, the output from the first level is being reduced by

the second level, which includes a set of regular binary

4-bit CSA (3:2) tree. However, each module X2 or L1

operation produces bit to the upcoming significant

digit column of the PPs array.

2. A new pre-alignment for PP array has been proposed as

described in Fig.8. The numbers of the generated partial

product equal to 2d+1 where d is 64-bit (16-digit) input

operand. Both (4221/8421) and

(4221/8421) have the same weight / in terms of

decimal/binary multiplication, respectively. The 33

partial products resulted are aligned in an array.

3. As shown in Fig.8, the partial product array comprise of

33 columns. The numbers of rows in the array are equal

to the number of digits per each column. Each column is

reduced independently using the CSA reduction tree.

 (8)

 44 2017، 1، العدد 17مجلد -مجلة البصرة للعلوم الهندسية

To balance the overall delay, the slowest output of each

(3:2) CSA stage is connected directly to the fast input of the

next (3:2) carry save adder stage.

It can be shown from Fig.8 that the worst case of

reduction in the PPs tree is in 16 where the total

number of digits is equal 33.

III. THE SIMULATION RESULT

The proposed combined multiplier 64-bit (16x16

digits) is implemented at gate level, then the result is

compared with the digital multipliers presents in [12] [13]

using logical effort approach. The proposed multiplier is

synthesized with Xilinx ISE13.2.

 Fig.6 Module X2

B. Numerical Example

For the decimal case, the multiplication of two numbers

N1_d and N2_d are given below:

Let N1_d = 7555255216 and N2_d = 7583916655 and

the Products of (N1_d × N2_d) = 5729 8425 8653 9802

2480

Fig. 9 shows the simulation result of the decimal

multiplication.

For the binary case, the simulation result of the

following example of multiplying two numbers A and B is

illustrated in Fig.10

N1_b= 355E31CE

N2_b= 35794A54

(N1_b × N2_b)=25C9541fBCA9F33

II. COMPARISON

The logical effort approach is a way used to measure the

delay in unit of FO4 in a CMOS circuit. The fastest design

can be selected by comparing the delay of logic structures in

the different component types.

Logical effort approach is used to calculate the

estimation delay of the proposed combined multiplier. The

estimated delay of the proposed combined multiplier is

compared with the most recent combined decimal/binary

multiplier [13] and the standalone decimal multiplier [12].

Basrah Journal for Engineering Sciences, vol. 17, no. 1, 2017 45

Fig.7 Proposed Decimal/Binary CSA(s) Reduction Tree

Fig. 8 Partial Product Reduction Alignments

 46 2017، 1، العدد 17مجلد -مجلة البصرة للعلوم الهندسية

Fig. 9 Simulation Result of Decimal Multiplication

Table II shows the delay calculation of the multiplier.

Table II

Delay Calculation of Proposed Multiplier Architecture

(FO4)

Block Delay (FO4)

PP Generation stage 6.1

PP Reduction tree 31.3

Adder stage 3.2

Total stages 40.5

 Table III illustrates that the proposed combined

multiplier reduces the delay by 4.66% and 19.32% when

compared with [13] and [12], respectively.

Table III

Delay Comparison between Different Multipliers

Design Delay (FO4)

Decimal Multiplier [12] 50.2

Combined Multiplier [11] 42.48

Proposed Multiplier 40.5

Note: a) Binary PPR tree only = 20.8 FO4.

 b) Decimal PPR tree only = 26.5 FO4.

III. CONCLUSIONS

In this research, a new combined decimal/binary multiplier

based on a new partial products reduction tree has been

proposed. It supports both decimal and binary floating point

units. A new CSA tree based on (9:4) and (8:4) compressors

is suggested and used to reduce the partial products column

by column. Then, a set of conventional (3:2) CSA is used to

add the result of the (9:4) and (8:4) compressors. The

proposed fast combined multiplier can be used in both high

performance multiplier and fused multiply add (FMA) units.

Fig. 10 Simulation Result of Binary Multiplication

x1

x2 x1

x1 x1

x1 x1

x1 x1 x1 x1 x1 x1

x1 x1

x1 x1 x1 x1 x1 x1

x2 x1

x2 x1 x2 x1

x2 x1 x2 x1

x4 x2 x2 x1 x4 x2 x2 x1

x2x4
x2

x2 x1 x4 x2 x2 x1

x4 x2 x2 x1 x4 x2 x2 x1 x4 x2 x2 x1 x4 x2 x2 x1

8:4 9:4 8:48:4

4 44 4 4 4 4 4 4 4 4 4 4 4

3:2 3:2 3:2 3:2

x2x2 L1L1 L1L1

3:2 3:2 3:2 3:2

x2x2

x2x4 x2x2x4 x2

x4

L1

x4

L1

x4

L1

x4

L1

3:2 3:2

3:2 3:2

3:2

3:2

x2x2

x2x2

x2

44

S (4221)H (4221)

[0]- [16] (4221)/(8421)

[17]- [33] (4221)/(8421)

S(4221/8421
)

H(4221/842
1)

Basrah Journal for Engineering Sciences, vol. 17, no. 1, 2017 47

IV. REFERENCES

[1] D. Zuras and M. Cowlishaw, “IEEE Standard for

Floating Point Arithmetic”, IEEE 754-2008, pp. 1–70, Aug.

2008.

[2] T. Lang and A. Nannarelli, “A Radix 10 Combinational

Multiplier”, In 40-th Asilomar Conference on Systems

computers and signals, pp. 313-317, Oct.2006.

[3] A. Vazquez , J. Bruguera and E. Antelo, “ Fast Radix-

10 Multiplication Using Redundant BCD codes”, In IEEE

Transactions on Computers, Vol. 63, No. 8, pp. 1902-1914,

Aug. 2014.

 [4] L. Dadda and A. Nannarelli, “A Variant of a Radix-10

Combinational Multiplier”, In IEEE Systems and Circuits

(ISCAS), pp 3370-3373, May. 2008.

[5] M. Erle, E. M. Schwarz and M. Schulte, “Decimal

Multiplication With Efficient Partial Product Generation”,

In 17-th IEEE Symposium on Computer Arithmetic, pp 21-

28, Jun. 2005.

[6] A. Vazquez ,P. Montuschi and E. Antelo, “A New

Family of High-Performance Parallel Decimal Multipliers”,

In. 18-th IEEE Symposium on Computer Arithmetic, pp

195-204, Jun. 2007.

[7] A. Vazquez, P. Montuschi and E. Antelo, “Improved

Design of High Performance Parallel Decimal Multipliers”,

IEEE Transactions on Computers, Vol. 9, No. 5, pp 679-

693, May. 2010.

[8] B. Hickmann and Mark Erle, “Improved Combined

Decimal/Binary Fixed Point Multiplier”, IEEE, pp 87-94,

Aug. 2008.

[9] M. Vestias and H. Neto, “Parallel decimal multipliers

using binary multipliers”, IEEE Programmable Logic

Conference (SPL), pp.73-78, Jun.2010.

[10] L. Han. and S. Ko, “High-Speed Parallel Decimal

Multiplication with Redundant Internal Encodings”, IEEE

Transactions on Computers, Vol.62, pp 956–968, Jan.2012.

[11] M. Zhu , A. Baker and Y. Jiang, “On a parallel decimal

multiplier based on hybrid 8-4-2-1 and 5-4--21 BCD

recoding”, In. IEEE 56-th International Midwest

Symposium, pp. 1391-1394, Aug.2013.

[12] X. Cui,W. Liu,D. Wenwen and F. Lombardi,

“A Parallel Decimal Multiplier Using Hybrid Binary Coded

Decimal Codes”, In IEEE 23-nd Symposium on Computer

Arithmetic, pp. 150-155, Aug. 2016.

[13] A.Wahba and H.Fahmy, “Area Efficient and Fast

Combined decimal/binary Floating-Point Fused Multiply

Add Unit”, IEEE, Vol. 66, pp. 226-239, Jun.2016.

